

Doctors and Technology: Machine Learning at the Bedside

Paul WG Elbers, MD, PhD, EDIC

Intensivist, Department of Intensive Care Medicine Amsterdam UMC, location VUmc

p.elbers@amsterdamumc.nl

Data Science Section

Odcmed

The future is now

The NEW ENGLAND JOURNAL of MEDICINE

REVIEW ARTICLE

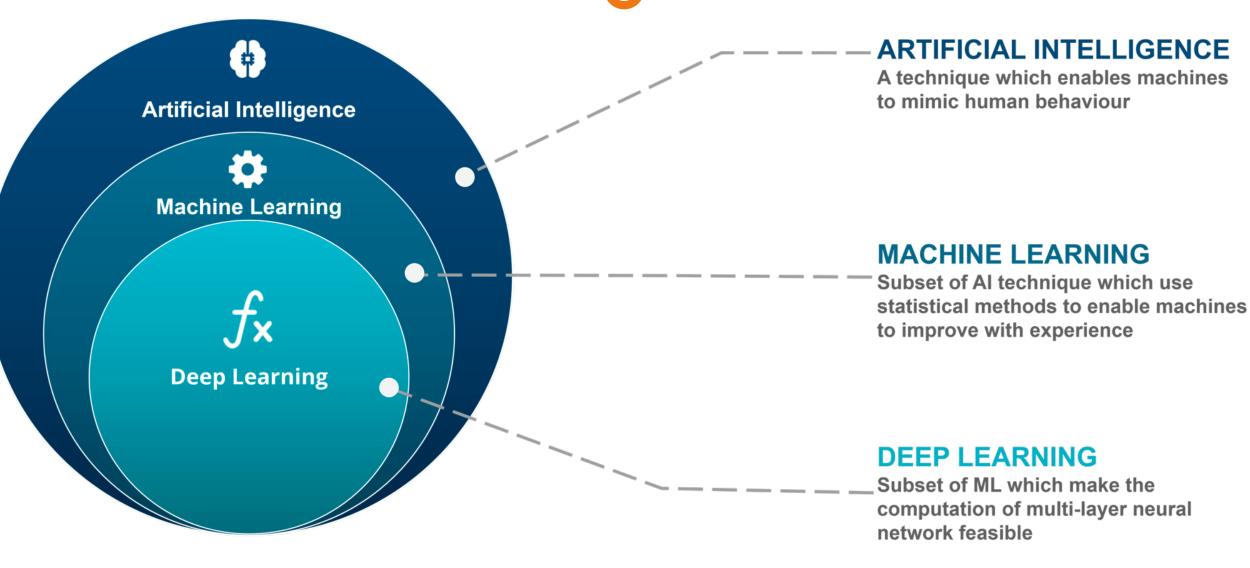
FRONTIERS IN MEDICINE

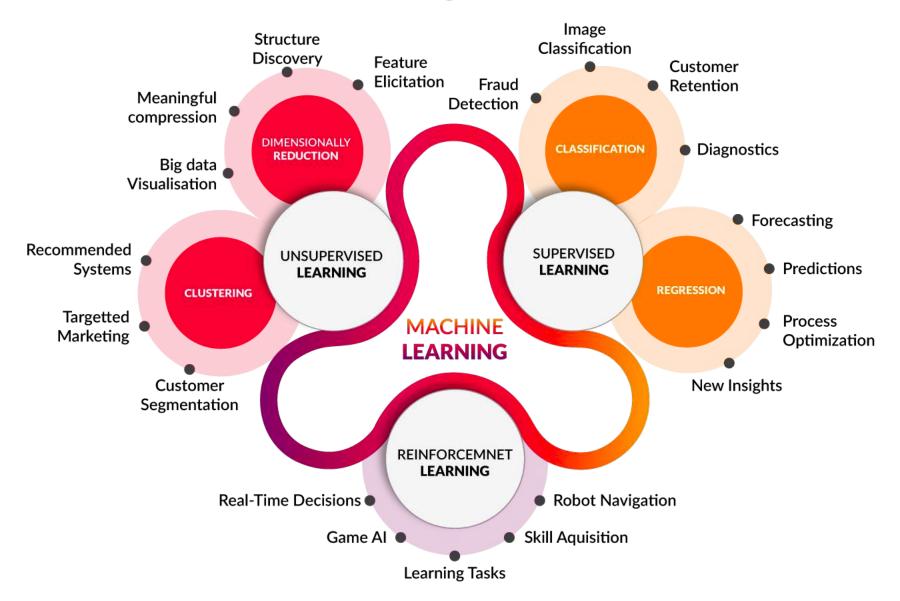
Machine Learning in Medicine

Alvin Rajkomar, M.D., Jeffrey Dean, Ph.D., and Isaac Kohane, M.D., Ph.D.

The promise of machine learning in medicine

The wisdom contained in the decisions made by nearly all clinicians and the outcomes of billions of patients should inform the care of each patient

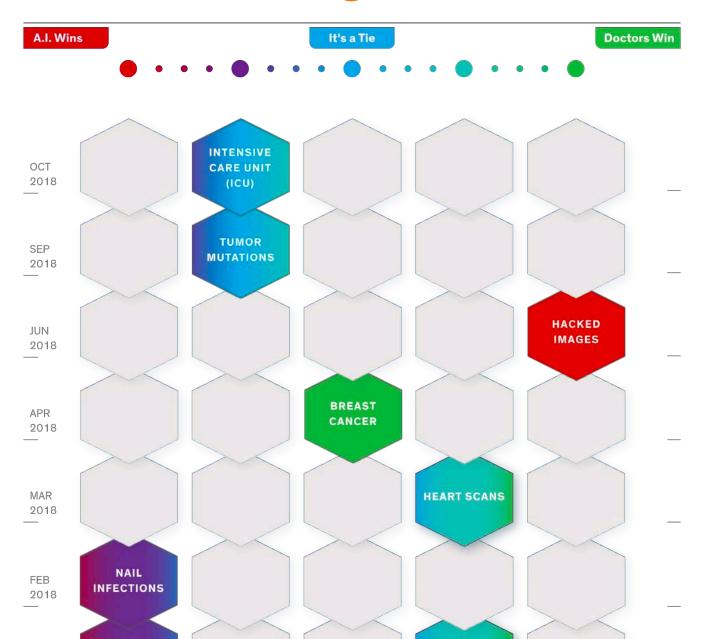


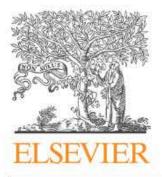


The ICU is a natural habitat for AI

- Lots of data
- High mortality
- Uncertainty on diagnosis and prognosis
- Decisions with consequences

https://spectrum.ieee.org/static/ai-vs-doctors

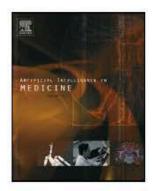




Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com/locate/artmed



Accurate prediction of blood culture outcome in the intensive care unit using long short-term memory neural networks

Tom Van Steenkiste^a, Joeri Ruyssinck^{a,*}, Leen De Baets^a, Johan Decruyenaere^b, Filip De Turck^a, Femke Ongenae^a, Tom Dhaene^a

^a Ghent University - imec, IDLab, Department of Information Technology, Technologiepark 15, B-9052, Ghent, Belgium

^b Ghent University Hospital, Department of Internal Medicine, De Pintelaan 185, B-9050 Ghent, Belgium

Outcome Prediction in Postanoxic Coma With Deep Learning*

Marleen C. Tjepkema-Cloostermans, PhD; Catarina da Silva Lourenço, BSc^{2,3}; Barry J. Ruijter, MD, PhD²; Selma C. Tromp, MD, PhD⁴; Gea Drost, MD, PhD⁵; Francois H. M. Kornips, MD⁶; Albertus Beishuizen, MD, PhD⁷; Frank H. Bosch, MD, PhD⁸; Jeannette Hofmeijer, MD, PhD^{2,9}; Michel J. A. M. van Putten, MD, PhD^{1,2}

ARTICLE OPEN

Reduction of false alarms in the intensive care unit using an optimized machine learning based approach

Wan-Tai M. Au-Yeung 10, Ashish K. Sahani, Eric M. Isselbacher and Antonis A. Armoundas 1,3

Critical Care

RESEARCH Open Access

Machine learning versus physicians' prediction of acute kidney injury in critically ill adults: a prospective evaluation of the AKIpredictor

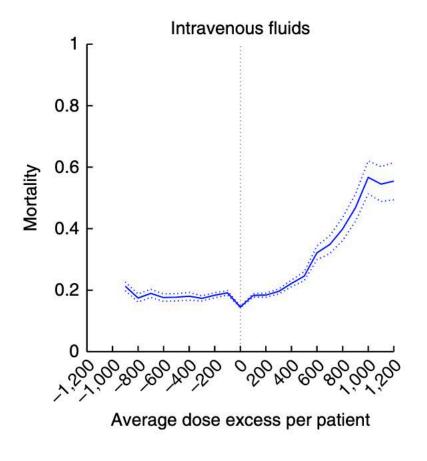
Marine Flechet^{3†}, Stefano Falini^{1†}, Claudia Bonetti², Fabian Güiza³, Miet Schetz³, Greet Van den Berghe³ and Geert Meyfroidt^{3*}

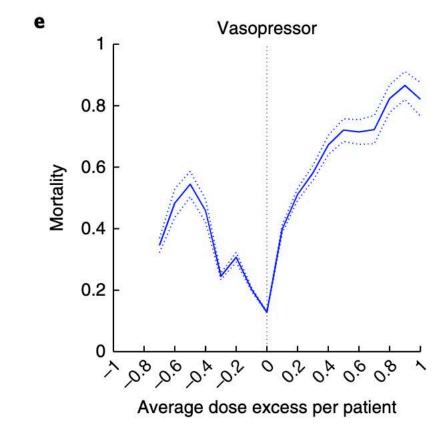
ARTICLES

https://doi.org/10.1038/s41591-018-0213-5

The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care

Matthieu Komorowski (1,2,3), Leo A. Celi (1,4), Omar Badawi 3,5,6, Anthony C. Gordon (1,2) and A. Aldo Faisal 2,7,8,9*





RESEARCH Open Access

Use of machine learning to analyse routinely collected intensive care unit data: a systematic review

Duncan Shillan^{1,2}, Jonathan A. C. Sterne^{1,2}, Alan Champneys³ and Ben Gibbison^{1,4,5*}

Table 1 Number and proportion of papers according to the aim of study and number of patients analysed

		Number of patients analysed						
Aim of study	Number (%) of papers with this aim ^a	< 100	100–1000	1000–10,000	10,000-100,000	100,000-1,000,000	Number not reported	
Predicting complications	79 (30.6%)	23 (29.1%)	26 (32.9%)	17 (21.5%)	8 (10.1%)	3 (3.8%)	2 (2.5%)	
Predicting mortality	70 (27.1%)	11 (15.7%)	19 (27.1%)	19 (27.1%)	18 (25.7%)	1 (1.4%)	2 (2.9%)	
Improving prognostic models/risk scoring system	43 (16.7%)	8 (18.6%)	16 (37.2%)	8 (18.6%)	8 (18.6%)	2 (4.7%)	1 (2.3%)	
Classifying sub-populations	29 (11.2%)	11 (37.9%)	8 (27.6%)	6 (20.7%)	2 (6.9%)	0 (0.0%)	2 (6.9%)	
Alarm reduction	21 (8.14%)	9 (42.9%)	5 (23.8%)	7 (33.3%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Predicting length of stay	18 (6.98%)	3 (16.7%)	7 (38.9%)	5 (27.8%)	3 (16.7%)	0 (0.0%)	0 (0.0%)	
Predicting health improvement	17 (6.59%)	5 (29.4%)	10 (58.8%)	2 (11.8%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Determining physiological thresholds	16 (6.20%)	10 (62.5%)	4 (25.0%)	1 (6.2%)	0 (0.0%)	0 (0.0%)	1 (6.2%)	
Improving upon previous methods	5 (1.94%)	2 (40.0%)	1 (20.0%)	1 (20.0%)	1 (20.0%)	0 (0.0%)	0 (0.0%)	
Detecting spurious recorded values	3 (1.16%)	1 (33.3%)	2 (66.7%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	0 (0.0%)	
Total (accounting for duplicates)	258	72 (27.9%)	84 (32.6%)	55 (21.3%)	35 (13.6%)	6 (2.33%)	6 (2.33%)	

^aWhere papers had more than one aim, all aims were recorded, so percentages may total more than 100

Paper	Outcome	No. Models	Models	No. Patients	No. Features	Hrs bef. Onset	
Emergency Department							
Horng, 2017	Sepsis	13	SVM, GLM, NB, EM	230936	10-12	-	
Haug, 2016	Sepsis	6	NB	280143	24	-	HERE
Brown, 2012	Severe sepsis and Septic shock	1	NB	132748	5	-	
Brown, 2016	Severe sepsis and Septic shock	1	NB	93773	5	-	
In-Hospital							
Khojandi, 2018	Sepsis	3	EM	261258	9	0	F■
Futoma, 2017	Sepsis	6	NNM, GLM	49312	32	0-12	
McCoy, 2017	Severe sepsis, Sepsis	2	GLM	1665	6	0	F ■
Lin, 2018	Septic shock	16	More than 4*	25770	7	3-6	
Khoshnevisan, 2018	Septic shock	9	More than 4*	25770	19	4	·
Thiel, 2010	Septic shock	6	DT	13785	24	Unavailable	
Intensive Care Unit							
Wang, 2018	Sepsis	3	GLM, SVM, EM	19358	12	0	
Shashikumar II, 2017	Sepsis	3	GLM	1100	4-21	4	}
Shashikumar I, 2017	Sepsis	7	SVM	682	2-22	4	h
Desautels, 2016	Sepsis	2	GLM	22853	8	0-4	
Nemati, 2018	Sepsis	8	PHM	27527-42411	48	4-12	h
Calvert II, 2016	Sepsis	1	GLM	1394	9	3	
Kam, 2017	Sepsis	7	NNM, LSTM	5789	9	0-3	h
Moss, 2016	Severe sepsis	2	GLM	3059	7	0	
Guillen, 2015	Severe sepsis	9	GLM, SVM, EM	3446	7-19	2	}
Shimabukuro, 2017	Severe sepsis	1	GLM	142	17	0	
Henry, 2015	Septic shock	1	PHM	16234	30	28.2	
Calvert I, 2016	Septic shock	2	GLM	Unavailable	9	0-4	}I
ED/In-Hospital/ICU							
Mao, 2017	Sepsis, Severe sepsis, Septic shock	10	EM	1140-239767	3-6	0	F
						0.:	50 0.60 0.70 0.80 0.90 1.0 AUC [min-mean-max]

we have a problem

Computing science will probably exert its major effects by augmenting and, in some cases, largely replacing the intellectual functions of the physician.

SPECIAL ARTICLE

MEDICINE AND THE COMPUTER

The Promise and Problems of Change

WILLIAM B. SCHWARTZ, M.D.*

Challenges

• So much data, so little access for data science

So many models, so little clinical validation

• So many EHRs, so little control for intensivists

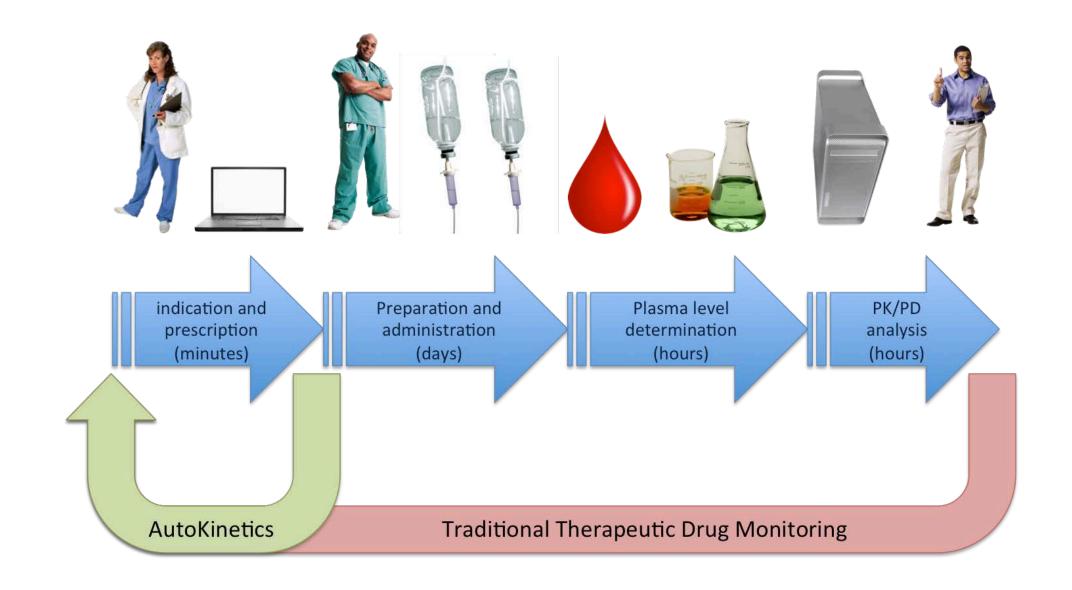
although there are thousands of papers applying machine learning algorithms to medical data very few have contributed meaningfully to clinical care

algorithms that
feature prominently
in research literature are
seldomly executable
at the frontlines of clinical practice

Afdelingsmonitor

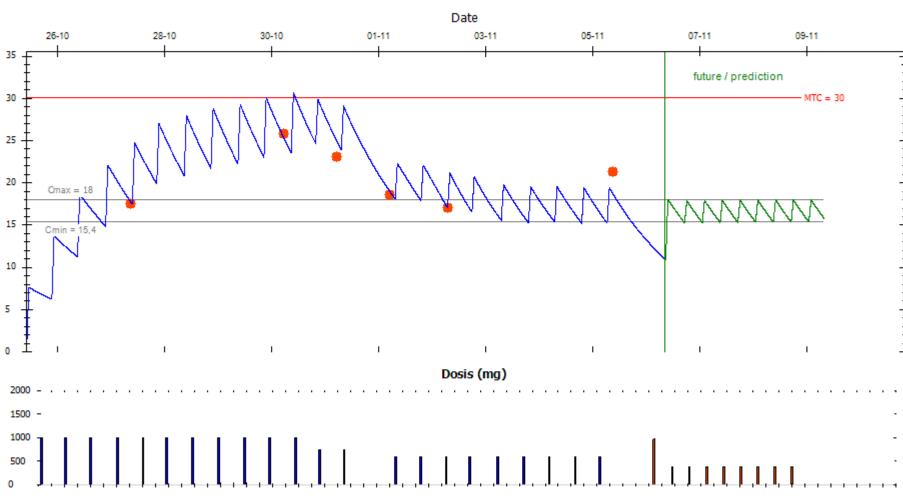
☐ Toon zonder ondersteuning

BEDNR. 🗸	PATIËNTGEGEVENS	OPNAME DIAGNOSE	HEROPNAME/ MORTALITEIT RISICO	✓ ONDE	ERSTEUN	ING 🗸
01	Janssen, J. Dhr. 14250 1954-11-01	Post-operatief CABG	1.0%	À	8	A
02	Brandts, M. Mw. 18282 1954-11-11	Coma/verandering bewustzijnsniveau (non-operatief neuro)	1.8%	٨	89	A
03	Estevez, E. Mw. 15045 1940-07-15	Respiratoir - medisch anders	2.5%	À	9	A
04	Veldhuis, J. Mw. 14593 1962-05-10	Longembolieën	4.7%	٨	99	A
05	Berendse, F. Dhr. 17359 1969-06-12	Cardiovasculair - medisch anders	1.6%	À	*	A
06	Huygens, S. Dhr. 15982 1968-09-29	Bacteriele pneumonie	6.1%	٨	99	A
07	Tully, T. Dhr. 15066 1939-04-01	Acuut nierfalen	7.5	٨	*	A
08	Jungens, M. Dhr. 14290 1994-08-15	Bacteriele pneumonie	8.2%	À	89	A
09	Meester, M. Dhr. 14688 1953-12-16	Congestief hartfalen	-	٨	*	4
10	Waninge, G. Mw. 15363 1932-01-16	Post-operatief Meer patiënten V	5.4%	٨	97	4



Model = Vancomycine del Mar de Fernández 2007

Vancomycine concentratie (mg/L)



Vancomycine advies

Geef eerst een eenmalige kortlopend infuus vancomycine van 975 mg om 6-11-2017 10:24 Continueer met doseren van 390 mg vancomycine elke 8 uur. De starttijd is om 6-11-2017 18:24

A Machine Learning Algorithm to Predict Severe Sepsis and Septic Shock: Development, Implementation, and Impact on Clinical Practice

Heather M. Giannini, MD¹; Jennifer C. Ginestra, MD¹; Corey Chivers, PhD²; Michael Draugelis, BS²; Asaf Hanish, MPH²; William D. Schweickert, MD², Barry D. Fuchs, MD, MS², Laurie Meadows, RN, CCRN⁴; Michael Lynch, RN, CEN¹; Patrick J. Donnelly, RN, MS, CCRN⁴; Kimberly Pavan, MSN, CRNP⁵; Neil O. Fishman, MD²; C. William Hanson, MD, III²; Craig A. Umscheid, MD, MSCE², 8

TABLE 4. Outcomes in Screen Positive Patients

Outcome Measures	Silent (n = 1,540)	Alert (n = 2,137)	P
Hospital length of stay, median (IQR), d	9 (5–18)	9 (5-18)	0.39
ICU transfer < 6 hr after alert, %	9.2	12.0	0.14
ICU transfer < 24 hr after alert, %	14.4	16.8	0.19
ICU transfer < 48 hr after alert, %	16.4	18.9	0.20
ICU transfer any time after alert, %	25.6	26.1	0.80
Time to ICU transfer after alert, median (IQR), hr	16 (2-108)	8 (2-62)	< 0.01
ICU length of stay, median (IQR), hr	71 (38–163)	85 (43-179)	0.11
Mortality ≤ 30 d after trigger, %	9.8	9.4	0.81
In-hospital mortality, %	10.6	10.3	0.88
Discharged to home, %	59.9	58.4	0.42
Discharged to nursing facility, %	15.3	15.2	0.93
Discharged to inpatient hospice, %	3.4	4.6	0.51
Severe Sepsis or septic shocka, %	20.5	18.6	0.32

IQR = interquartile range.

^aSevere sepsis: > 2 SIRS and positive blood or urine culture and lactate > 2.2; septic shock: severe sepsis and systolic blood pressure < 90 mm Hg.

BMJ Open Respiratory Research

Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial

David W Shimabukuro, ¹ Christopher W Barton, ² Mitchell D Feldman, ³ Samson J Mataraso, ^{4,5} Ritankar Das ⁶

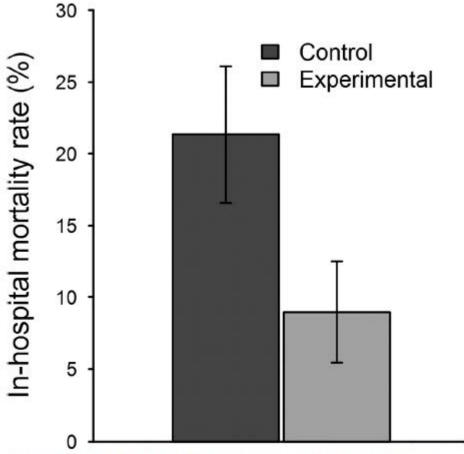
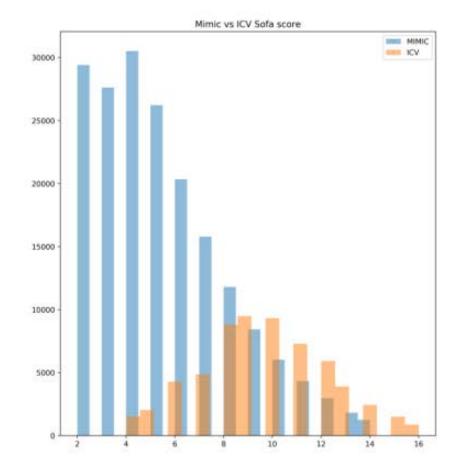


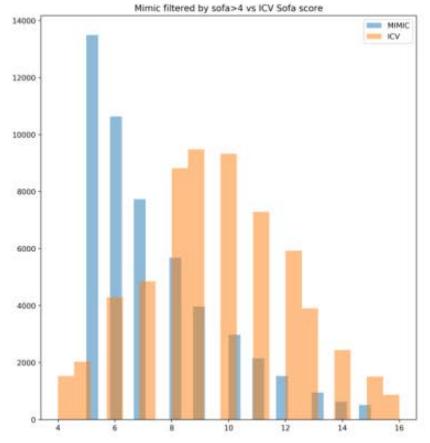
Figure 3 Reduction of in-hospital mortality rate when using the machine learning algorithm. The error bars represent one standard error above and below the average in-hospital mortality rate.

Sharing is caring

- MIMIC 1 center USA
- elCU 200 centers USA

- CCHIC 5 centers UK
- M@TRIC 3 centers Belgium
- Bristol 1 center UK





AmsterdamUMCdb

About

AmsterdamUMCdb is the first freely accesible European intensive care database. It is endorsed by the European Society of Intensive Care Medicine (ESICM) and its Data Sciendce Section. It contains de-identified health data related to tens of thousands of intensive care unit admissions, including demographics, vital signs, laboratory tests and medications.

- Beloftes en beperkingen van big data
- Op waarde schatten van een HDS studie/artikel/rapport
- Begeleiden en beoordelen van de analyse activiteiten
- Basis machine learning, artificial intelligence en data mining
- Vertrouwelijkheid van data en privacy overwegingen

www.amc.nl/healthinformatics

